高光谱图像的聚类是一个基本而具有挑战性的任务。最近的高光谱图像聚类的发展已经从浅模型演变为深度,并且在许多基准数据集中实现了有希望的效果。然而,它们较差的可扩展性,稳健性和泛化能力,主要是由离线聚类方案引起的,极大地将其应用限制为大型超光谱数据。为了规避这些问题,我们基于自我监督学习呈现了一个可扩展的深度在线聚类模型,名为Spectral-Spatial对比聚类(SSCC)。具体地,我们利用了由簇号的一维的投影头组成的对称双神经网络,以从光谱空间增强池进行双重对比度学习。我们通过隐式鼓励在群集内相似度和群集冗余之间来定义目标函数。由此产生的方法通过批量优化以端到端的方式培训,使其在大规模数据中具有稳健性,并导致未经看明数据的良好概括能力。三个高光谱图像基准的广泛实验证明了我们的方法的有效性,并表明我们通过大型边缘推进最先进的方法。
translated by 谷歌翻译
本文提出了FLGC,这是一个简单但有效的全线性图形卷积网络,用于半监督和无人监督的学习。基于计算具有解耦步骤的全局最优闭合液解决方案而不是使用梯度下降,而不是使用梯度下降。我们展示(1)FLGC强大的是处理图形结构化数据和常规数据,(2)具有闭合形式解决方案的训练图卷积模型提高了计算效率而不会降低性能,而(3)FLGC作为自然概括非欧几里德域的经典线性模型,例如Ridge回归和子空间聚类。此外,我们通过引入初始剩余策略来实现半监督的FLGC和无监督的FLGC,使FLGC能够聚集长距离邻域并减轻过平滑。我们将我们的半监督和无人监督的FLGC与各种分类和聚类基准的许多最先进的方法进行比较,表明建议的FLGC模型在准确性,鲁棒性和学习效率方面始终如一地优于先前的方法。我们的FLGC的核心代码在https://github.com/angrycai/flgc下发布。
translated by 谷歌翻译
Recent investigations on rotation invariance for 3D point clouds have been devoted to devising rotation-invariant feature descriptors or learning canonical spaces where objects are semantically aligned. Examinations of learning frameworks for invariance have seldom been looked into. In this work, we review rotation invariance in terms of point cloud registration and propose an effective framework for rotation invariance learning via three sequential stages, namely rotation-invariant shape encoding, aligned feature integration, and deep feature registration. We first encode shape descriptors constructed with respect to reference frames defined over different scales, e.g., local patches and global topology, to generate rotation-invariant latent shape codes. Within the integration stage, we propose Aligned Integration Transformer to produce a discriminative feature representation by integrating point-wise self- and cross-relations established within the shape codes. Meanwhile, we adopt rigid transformations between reference frames to align the shape codes for feature consistency across different scales. Finally, the deep integrated feature is registered to both rotation-invariant shape codes to maximize feature similarities, such that rotation invariance of the integrated feature is preserved and shared semantic information is implicitly extracted from shape codes. Experimental results on 3D shape classification, part segmentation, and retrieval tasks prove the feasibility of our work. Our project page is released at: https://rotation3d.github.io/.
translated by 谷歌翻译
With the attention mechanism, transformers achieve significant empirical successes. Despite the intuitive understanding that transformers perform relational inference over long sequences to produce desirable representations, we lack a rigorous theory on how the attention mechanism achieves it. In particular, several intriguing questions remain open: (a) What makes a desirable representation? (b) How does the attention mechanism infer the desirable representation within the forward pass? (c) How does a pretraining procedure learn to infer the desirable representation through the backward pass? We observe that, as is the case in BERT and ViT, input tokens are often exchangeable since they already include positional encodings. The notion of exchangeability induces a latent variable model that is invariant to input sizes, which enables our theoretical analysis. - To answer (a) on representation, we establish the existence of a sufficient and minimal representation of input tokens. In particular, such a representation instantiates the posterior distribution of the latent variable given input tokens, which plays a central role in predicting output labels and solving downstream tasks. - To answer (b) on inference, we prove that attention with the desired parameter infers the latent posterior up to an approximation error, which is decreasing in input sizes. In detail, we quantify how attention approximates the conditional mean of the value given the key, which characterizes how it performs relational inference over long sequences. - To answer (c) on learning, we prove that both supervised and self-supervised objectives allow empirical risk minimization to learn the desired parameter up to a generalization error, which is independent of input sizes. Particularly, in the self-supervised setting, we identify a condition number that is pivotal to solving downstream tasks.
translated by 谷歌翻译
In the new era of personalization, learning the heterogeneous treatment effect (HTE) becomes an inevitable trend with numerous applications. Yet, most existing HTE estimation methods focus on independently and identically distributed observations and cannot handle the non-stationarity and temporal dependency in the common panel data setting. The treatment evaluators developed for panel data, on the other hand, typically ignore the individualized information. To fill the gap, in this paper, we initialize the study of HTE estimation in panel data. Under different assumptions for HTE identifiability, we propose the corresponding heterogeneous one-side and two-side synthetic learner, namely H1SL and H2SL, by leveraging the state-of-the-art HTE estimator for non-panel data and generalizing the synthetic control method that allows flexible data generating process. We establish the convergence rates of the proposed estimators. The superior performance of the proposed methods over existing ones is demonstrated by extensive numerical studies.
translated by 谷歌翻译
The high feature dimensionality is a challenge in music emotion recognition. There is no common consensus on a relation between audio features and emotion. The MER system uses all available features to recognize emotion; however, this is not an optimal solution since it contains irrelevant data acting as noise. In this paper, we introduce a feature selection approach to eliminate redundant features for MER. We created a Selected Feature Set (SFS) based on the feature selection algorithm (FSA) and benchmarked it by training with two models, Support Vector Regression (SVR) and Random Forest (RF) and comparing them against with using the Complete Feature Set (CFS). The result indicates that the performance of MER has improved for both Random Forest (RF) and Support Vector Regression (SVR) models by using SFS. We found using FSA can improve performance in all scenarios, and it has potential benefits for model efficiency and stability for MER task.
translated by 谷歌翻译
A general, {\em rectangular} kernel matrix may be defined as $K_{ij} = \kappa(x_i,y_j)$ where $\kappa(x,y)$ is a kernel function and where $X=\{x_i\}_{i=1}^m$ and $Y=\{y_i\}_{i=1}^n$ are two sets of points. In this paper, we seek a low-rank approximation to a kernel matrix where the sets of points $X$ and $Y$ are large and are not well-separated (e.g., the points in $X$ and $Y$ may be ``intermingled''). Such rectangular kernel matrices may arise, for example, in Gaussian process regression where $X$ corresponds to the training data and $Y$ corresponds to the test data. In this case, the points are often high-dimensional. Since the point sets are large, we must exploit the fact that the matrix arises from a kernel function, and avoid forming the matrix, and thus ruling out most algebraic techniques. In particular, we seek methods that can scale linearly, i.e., with computational complexity $O(m)$ or $O(n)$ for a fixed accuracy or rank. The main idea in this paper is to {\em geometrically} select appropriate subsets of points to construct a low rank approximation. An analysis in this paper guides how this selection should be performed.
translated by 谷歌翻译
We propose a new neural network design paradigm Reversible Column Network (RevCol). The main body of RevCol is composed of multiple copies of subnetworks, named columns respectively, between which multi-level reversible connections are employed. Such architectural scheme attributes RevCol very different behavior from conventional networks: during forward propagation, features in RevCol are learned to be gradually disentangled when passing through each column, whose total information is maintained rather than compressed or discarded as other network does. Our experiments suggest that CNN-style RevCol models can achieve very competitive performances on multiple computer vision tasks such as image classification, object detection and semantic segmentation, especially with large parameter budget and large dataset. For example, after ImageNet-22K pre-training, RevCol-XL obtains 88.2% ImageNet-1K accuracy. Given more pre-training data, our largest model RevCol-H reaches 90.0% on ImageNet-1K, 63.8% APbox on COCO detection minival set, 61.0% mIoU on ADE20k segmentation. To our knowledge, it is the best COCO detection and ADE20k segmentation result among pure (static) CNN models. Moreover, as a general macro architecture fashion, RevCol can also be introduced into transformers or other neural networks, which is demonstrated to improve the performances in both computer vision and NLP tasks. We release code and models at https://github.com/megvii-research/RevCol
translated by 谷歌翻译
We address the theoretical and practical problems related to the trajectory generation and tracking control of tail-sitter UAVs. Theoretically, we focus on the differential flatness property with full exploitation of actual UAV aerodynamic models, which lays a foundation for generating dynamically feasible trajectory and achieving high-performance tracking control. We have found that a tail-sitter is differentially flat with accurate aerodynamic models within the entire flight envelope, by specifying coordinate flight condition and choosing the vehicle position as the flat output. This fundamental property allows us to fully exploit the high-fidelity aerodynamic models in the trajectory planning and tracking control to achieve accurate tail-sitter flights. Particularly, an optimization-based trajectory planner for tail-sitters is proposed to design high-quality, smooth trajectories with consideration of kinodynamic constraints, singularity-free constraints and actuator saturation. The planned trajectory of flat output is transformed to state trajectory in real-time with consideration of wind in environments. To track the state trajectory, a global, singularity-free, and minimally-parameterized on-manifold MPC is developed, which fully leverages the accurate aerodynamic model to achieve high-accuracy trajectory tracking within the whole flight envelope. The effectiveness of the proposed framework is demonstrated through extensive real-world experiments in both indoor and outdoor field tests, including agile SE(3) flight through consecutive narrow windows requiring specific attitude and with speed up to 10m/s, typical tail-sitter maneuvers (transition, level flight and loiter) with speed up to 20m/s, and extremely aggressive aerobatic maneuvers (Wingover, Loop, Vertical Eight and Cuban Eight) with acceleration up to 2.5g.
translated by 谷歌翻译
Multimodal machine translation (MMT) aims to improve translation quality by incorporating information from other modalities, such as vision. Previous MMT systems mainly focus on better access and use of visual information and tend to validate their methods on image-related datasets. These studies face two challenges. First, they can only utilize triple data (bilingual texts with images), which is scarce; second, current benchmarks are relatively restricted and do not correspond to realistic scenarios. Therefore, this paper correspondingly establishes new methods and new datasets for MMT. First, we propose a framework 2/3-Triplet with two new approaches to enhance MMT by utilizing large-scale non-triple data: monolingual image-text data and parallel text-only data. Second, we construct an English-Chinese {e}-commercial {m}ulti{m}odal {t}ranslation dataset (including training and testing), named EMMT, where its test set is carefully selected as some words are ambiguous and shall be translated mistakenly without the help of images. Experiments show that our method is more suitable for real-world scenarios and can significantly improve translation performance by using more non-triple data. In addition, our model also rivals various SOTA models in conventional multimodal translation benchmarks.
translated by 谷歌翻译